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Linear response

Perturbation theory
I'For a sufficiently small perturbation, the response of the system can be extended

into a taylor series, with respect to the perturbation.
I 'We will consider only the first order (linear) response, proportional to the
perturbation.
I The linear coefficient linking the response to the perturbation is called a response
function. It is independent of the perturbation and depends only on the system.
I & Strong field interaction(laser field for instance)

P

ExampIeS ! ' S N N r—
Density response function n_l_(r’t) =f dtf dr X(r1t’r L )V(I’ ’t)

Dielectric tensor D(Il‘,t) =" dt'" dl!‘ '/ (I!‘,t,l!",t')l:f(l!",t')




Which quantities do we need?

I
Absorption coefficient
The general solution of the Maxwell's | = ¢ ¢\ — = &i(kx-ob) K="y
equations for the electric field is E(r ’t) EOe C v

Defining the complex refractive index as N = J#="+i! ,the electric

field inside a medium | |§ the damqed yvave |
L s

E(r )=Eec e"'=Ee° ec eV
vland x are the refraction index and the extinction coefficient and
they are related to the dielectric constant (e=¢,+i¢,) as

7#;-:./2$I12 7#42:2/11

The absorption coefficient o is the inverse distance where the intensity
of the field is reduced by 1/e . .
d C 2"#_"$

| = | = =
(related to the optical skin depth §). Ly ' C 96




Which quantities do we need?

E I
‘ i Reflectivity
Normal incidence reflectivity

2

Z
Reflected beam
E <]_

Transmitted beam I E‘

/\/\/\/\ Using the continuity of the tangential

R =

component of the electric field at the surface

B (1# 11)2 +! 2
- m\2 / 2
Incident beam (1+7)" +:

The knowledge of the optical
constant implies the knowledge
of the absorption and of the
reflectivity, which can be
compared with the experiment.




Which quantities do we need?

Energy loss by a fast particle

Given an external charge density p.,;, one can obtained the external
potential V

kzvext(l:(’ /)= 4'#ext(|:(, /) (Poisson equation)

The response of the system is an induced density, defined by the
response function y

#i‘nd (l:(,./ ) = ”(l:<1'/ )Vext(l;"/ )

and the total (induced + external) potential acting on the system Is

Vtot(l!c"l ) - ;;1+;€_4\§ #(llc"/ givext(l!("l ) — "%-(l!(,./ )Vext(l!c"l )

Dielectric function: Vext(lzvl ) - "(E,/ )\/tot(lza-/)




Which quantities do we need?

I
Energy loss by a fast particle
Charge density of a particle (e) with velocity v : #, =e"(t ! vt)

The total electric field is E. = _:V}\/tot(l!‘ﬂt)
and the energy lost by the electron in unit time is

d_W Id""E T _ o] O
a7 with the current density ] =& (F! V)
We get w._. e Im0/ / i
ege dt +2(k2 *(k))l
|m§‘, 1
Electron Energy Loss Spectroscopy: $) (K,( ).

IS called the loss function
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MaxwellOs equations in vacuum

V Eext(r t) 4! "ext(r t) E: electric field
B: magnetic field
V Bext(r t) 0 | (induction)
I 10B,,
VxE_(f,t)=-=2"et
W)= |
Lob b art L 19E,,
VxB_(f,t ro)+-——=
()= " Jaa (T )+

Peyt &N J,; @re the (external) free charge and current density
They can be arbitrary, but they have p
to fulfill the continuity equation V.7 (f,'[) n /gtext -0




MaxwellOs equations in a medium

! S . It is often more
K ! =4/ "
mt(r ty=41" (r,t) or | .D(r,t)=4!/" (r,1) convenient to use

mr(’" t)=0 D — étot _|_4./|5
11} 1 $B0
) Etot (r 1) =#- - $;t instead of E,,, , as D can
L $| be very close to
" 41 13E, the external field
I Btot(r t)__]tot(r t)+C $;t

] L :!'Eex'[

With py0; =PexitPing @3N Jior Zlexttind » (see the previous slide)
Ping @Nd ji,4 are the induced charge and current density:

they are not arbitrary, but reflect the spatial structure of the medium on a

microscopic level and the motion of the particle in it, including also the response
to an external field.



Microscopic spatial fluctuations

¥ Infinite crystals — microscopic inhomogeneities (atomic scale)
¥ Semi-infinite crystals — presence of the surface

¥ Desorded medium — liquid

¥ Rough surfaces



Macroscopic average

We consider spatial fluctuations whose characteristic length scale
IS much smaller than the wavelength of light

Macroscopic guantities

Quantities that are slowly varying over the unit cells. | ss 13
where V is the volume per unit cell of the crystal. '

Examples
Ecxi(l 1), Aol 1), Vel 1),

Typical values:

yimension of the unit cell for silicon a_,
Wisible radiation 400 nm <A <800 nm

~0.5nm



Macroscopic average

N
Microscopic guantities
Total and induced fields are rapidly varying. They include the contribution

from electrons in all regions of the cell.
The contribution of electrons close to or far from the nuclei will be very different.

=> Large and irregular fluctuations over the atomic scale.

Examples
Eiot(rs D Jing(h s Ping(F D).



Macroscopic average

T
Measurable guantities

One measures quantities that vary on a macroscopic scale.

In the long wavelength limit,
the macroscopic neighbourhood contains many particles

We have to average over distances :
" llarge compared to the cell diameter
" Ismall compared to the wavelength of the external perturbation




Macroscopic average

General definition:

We have to define two operators Fﬁ; and Fﬁ? which extract the average component
and the fluctuation component of any function F

Iﬂf :P| In;l a Aa
F =PF

Iﬁ; and Fﬁ? have the following properties: f
1) PP=p P=P and PR =R -0 = Projectors
2) F?\ commutes with the time and space differential operators

The average part of the field must obey
the macroscopic MaxwellOs equations



Macroscopic average

The differences between the microscopic fields and the averaged (macroscopic)
fields are called the local fields

Complexity of the problem:

¥Macroscopic external field = induced fields

¥'he macroscopic procedure must take into account the fact that all the

components of the induced fields will create the response.
Procedure:

¥model for the system expressed in terms of an hamiltonian

¥Mmicroscopic response of the system (linear- response theory for mstance)
=> Definition of the microscopic dielectric tensor D(r w)=1 dr 1(F,r',! )E(r 1)

¥veraging: definition of g, which relates the average parts of D and E




Macroscopic average

Infinite crystals

Functions having the crystal symmetries V(r+ R)=V(r), where R is any vector
of the Bravais lattice, can be represented by the Fourier series

V(E0)= S V(q+G,w)e "
qG

It can be also written as

V(r./)=" V(ra./)e”

q

|| | : Y
where  V/(f36,/)=" V(q+G,/ )e”
G

IS a periodic function, with respect to the Bravais lattice.

Varies strongly even if the original wave is a long wave and nearly
constant within each cell (contains all the G-harmonics of the field).




Macroscopic average

. [
Infinite crystals

Spatial average over a cell of the periodic part

V(R @) =(V(F;q,0)).
—fdrE V(§+G.0)e®

—V(q+O w)

The macroscopic average corresponds to the G=0 component.
<!Truncation that eliminates all wave vectors outside the first Brillouin zone
(wave-vector truncation)

Macroscopic quantities have all their G components equal to O,
except the G=0 component.

— Satisfies the two criteria previously defined



Macroscopic average

¥MIf the external applied field is not macroscopic, this averaging procedure
for the response function of the material has no meaning.

¥One has to consider an average procedure based on the statistical
and quantum mechanical sense (beyond the scope of this lecture)

Exemples: X-ray spectroscopy (very short wavelength)
EEL Spectroscopy with atomic resolution
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Macroscopic average

A simple example: the longitudinal case

All the fields can be expressed in terms of potentials (E=-VV)

| | 1 1

WA= ' (r r o Real space
The longitudinal dielectric Vext(r" ) !dl‘ I(r,r', 1M, tot(r 1) ( pace)
function is defined as I : ~

Voo (@+G,/ )= "(@+G,a+G"! Vi (@+G'/ )
y (Reciprocal space)

. . . -
V¢, IS @ macroscopic quantity I: V. (G+G, ") =V,(a, ")/ o
This is not the case for V, (¢ +G,/)
e

Macroscopic average of V.,
Ve @/ )= (@ Nn@+G /) # "0 (@ W@/ )
o

The average of the product is not the product of the averages




Macroscopic average

A simple example: the Iongitudinal case
We have also |V, (g + G,!)= $ (G, W (g+G!)

where is ¢l the inverse dielectric function :

O/O#EBG (CIL ! )#f;l@(d, V=1

Macroscopic average of V., :

V., IS macroscopic = \/tot(é|+c:;, )= (q, /W Xt(q, /)

Vi (6,7 ) = "0,/ W@, )




Macroscopic average

A simple example: the longitudinal case

Macroscopic dielectric constant:

! L] ! Lo 1
Vext(qa'/ ) = M (qa'/ )\/tot(qa'/ )$ M (q,'/ ) = n#l ! /
00(3>7)
Mnversion of the full dielectric matrix "GG ((lq )$ "#1 (q )

Ve take the G=G =0 component of GG (q )

Interpretation
All the microscopic components of the induced field will couple together to

produce the macroscopic response



Macroscopic average

Another example: the Lorentz model

For non interacting dipoles (dilute media)

. . o.. polarisability of the dipole (atoms or molecules)
D — AT/ I N: number of dipoles per unit volume (density)
P=N/E | . . | .
loc E,..: local field acting on a given dipole

If Eoc=Eor» We have D = Etot +4x P = Etot +4/ N” Etot

I5=8MI§[0t=>gM =1+ 47 No

Mosotti (1850)
Claisius (1879)
Lorentz (1909)



Macroscopic average

The Lorentz mcl)del | |
4

In fact, E,.=E; Eloc = Emt +=/ P inthe Lorentz model
(for isotropic or cubic media)
» N/ » 4"N/
P= 4" E[ot #M :1+ 411
1#— N/ 15— N/

3 3

_ Jfa
B(#) = 7 |

" Based on classical physics, does not include microscopic

(quantum-mechanical) effects 47 Nf2
" Increase of the static dielectric function A =1+ 7
" Red shift of the transition frequency

" Not the case, when including microscopic effects
e

41
ugl $ m?2 $? NfOZI



Macroscopic average

Summary

¥We have defined microscopic and macroscopic fields
¥Microscopic quantities have to be averaged to be compared to experiments
¥l'he dielectric function has

- a microscopic expression (related to quantum mechanics)

- a macroscopic expression (classical scheme - Maxwell's equations)

¥Absorption <> Im {g,,} and EELS <> -Im {1/g,,}
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¥ Dielectric tensor for cubic symmetries



Dielectric tensor for cubic symmetries
B
Useful definitions
Transverse fields

Longitudinal fields

| "E(f)=0 or K!E(K)=0 | E(F)=0 o kE(K)=0

E(k) propagates along k E(k) propagates perpendicular to k

Examples: Examples:

¥plasmon oscillations ¥photons

¥sceening ¥optical properties of solids
¥electron energy loss
e

Dol I ]
Some definitions: E(r)! E(k) (Fourier transform)
(g is in the first Brillouin zone and G is

. 1 H
with k=q+G for crystals a reciprocical lattice vector)



Dielectric tensor for cubic symmetries

Transverse-longitudinal decomposition:

Any vector field can be split into longitudinal and transverse components
E=E'+E’ with ! "E'=0 and !.E"=0
Lo ] .l
EL([() — IQ.IQE(k)g and €= E (In real space, the relations are nonlocal)
Kk

I
Macroscopic dielectric tensor

The relation D(q,w) = ¢(q,m) E,(dq,w) can be written in terms
of the longitudinal and transverse components

DY\ (el el |(EL
o)\ el el \EL



Dielectric tensor for cubic symmetries

Question:
How can we make the link between
¥the microscopic dielectric tensor Microscopic
components

D(A+G,/)=# "(Q+G,q+G'/)E,(q+G,/) | of DandE,
i

¥the macroscopic dielectric tensor
Macroscopic

D(@,/)="(0./ )Eq(@./) | components
of D and E;



Dielectric tensor for cubic symmetries

No symmetry Cubic symmetry with g—0
! | gII\_/IL 8||\_/IT |,| I 1 LL O
baGwy=| La=5r OF
Ev  €wm %0 "
A longitudinal (transverse) ¥A longitudinal perturbation induces
perturbation induces longitudinal a longitudinal response only.

and transverse responses.

¥A transverse perturbation induces
a transverse response only.

¥Mndependent of the direction of g

This holds only for macroscopic quantities

. . . . . LT TL
The microscopic dielectric tensor has off-diagonal elements &€ and /!



Cubic symmetries with g—0

Longitudinal dielectric function

1

4

"1+ —xpp(q )
g

where x,,,(d,w) Is the density-density response function (TDDFT),

defined as

o (w) = I|m

md(q’ )_ #‘(qi ) xt(q’ )

Transverse dielectric function Iing!‘“](q,! =" ()
q!

Dielectric tensor

. . . . mlLL
The tensor is diagonal and contains only one quantity "y (/)



Cubic symmetries with g=0

Longitudinal dielectric function

One can show that the relation

1

(@)=

47 I
1"'? $,640.")

holds also when Q! O

Transverse dielectric function

depends on q

olT
M

(

g

1) #

"w (@)

We have also &,r (¢,) =0 £,/ (¢,) =0

These gquantities are much more complicated
and need further approximation to be computed
(cannot be expressed in terms of TDDFT).



Cubic symmetries

Summary

¥MWe have defined the longitudinal and transverse components
of the dielectric tensor.
¥MIn the long wavelength limit g—0 ,only one quantity is needed (optical isotropy)

) =8¢ =lm—
1 a0

¥For g=0, only g,'- has a simple expression in terms of the response function.




Cubic symmetries

D e
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¥ Dielectric tensor for non-cubic symmetries
- Properties



Non-cubic symmetries

Properties of the macroscopic quantities

LL(CI ) (ALAT(Q )f’

(@)= @) (TG



Non-cubic symmetries

Dielectric tensor - General case

§7(0.4.()
L' 4 "(G.4.0)"

3@G.() =1+4) f<a,a,()§;t+4)«fp

Quasipolarisabllity o : jind(é|+é,/):# ;;((!:|+C:5,(!:|+C:5',,/)I:Epert((!:|+é',_/)
G' —

But one can show that the relation g (él /Y= L
holds also for the non-cubic symmetries. ’ 194'# " (9,97 )
| |
and we have |#"(q,q,/) =%£2 "4(0,0,7) Longitudinal-longitudinal
dielectric function
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¥ Dielectric tensor for non-cubic symmetries

- Principal axis



Non-cubic symmetries -0

Main general result concerning g, : ¢, Is an analytic function of ¢

The limit g—0 does not depend on the direction of g.

= We can define gy(w) as  /u(")=lim/(g,")
q 0
/- is not analytic in the general case

Depending on the symmetry of the system, one can define the
3 principal axis, If they exist, (ny, n,,Ny) defining a frame
In which ¢,(w) is diagonal.

If E,,is parallel to one of these axis n; [T, (" )E, (") =!.(")E, (")

¢; (w) can be calculated as a longitudinal dielectric function | " (/)= "t (n,/)




Non-cubic symmetries -0

The distinction between longitudinal and transverse is not meaningful

The only important direction is the direction of the electric field

If g— 0, the fields do not propagate
I

Existence of the principal frame ? g, is symmetric but complex !
No general answer
Use of geometrical arguments

Symmetries

¥ Cubic ¥ Monoclinic
¥ Hexagonal M Triclinic

¥ Orthorombic



Shorter wavelength g=0

Alternative: o 4
Wecanuse  #,(q,()=1+4)"(q.q9.( )il: 4) 4551. Z;.*(zi ?C—]’»’(;’ 3L

where jind((!]'l'é‘;! ) :# ’-’.((!:I_l_é'!(!:l-*-é"! ):Epert((!:l+é'l"l )
G

The induced current can be evaluated through the
(Time-Dependent)-Density-Current Functional Theory (TD-DCFT)




Which quantities do we need?

11 O/
Electron Energy Loss Spectroscopy: ! m@,(ﬁ")&‘
g, )"

with -V, (G, @) = (8! V(G ©)

In that case, g((!],! )="v(G.! )

Is this correct? The perturbation is longitudinal.
What about the transverse response?

rz o] 12V
Czqu (/) and Czqz! o2

|
One can show that E'(G,/)=

In the nonrelativistic approximation, the transverse fields are negligible
and the LL component of the dielectric tensor describes the energy
loss of charged particles
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¥ Summary



Summary

The key quantity is the dielectric tensor.

Relation between microscopic and macroscopic fields.

For cubic crystals, the longitudinal dielectric function g,,(w) defines entirely
the optical response in the long wavelength limit (g—0).

For non-cubic crystals, the dielectric functions calculated along the principal
axis can be used to define entirely the optical response in the long
wavelength limit.

For non-vanishing momentum, the situation is not so simple: ¢,,*- (q,w) only
can be defined in a simple way.



