User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Understanding correlations in vanadium dioxide from first principles

Breadcrumb

  • Home
  • Understanding correlations in vanadium dioxide from first principles
Author
Matteo Gatti
Fabien Bruneval
Olevano V
Lucia Reining
Keywords
paper
Abstract

Vanadium dioxide is a prototype material for the discussion of correlation effects in solids. First-principles density-functional theory does not describe the metal-insulator transition, whereas strongly correlated models reproduce the main features. Here we present a parameter-free GW calculation of VO2 and show that the correlation effects in the band structure of both the metallic and the insulating phases are correctly reproduced, provided that quasiparticle energies and wave functions are calculated self-consistently. Our calculations explain the satellite in the photoemission spectrum of the metal as due to a plasmon resonance in the energy-loss function and show that this feature disappears in the insulator.

Year of Publication
2007
Journal
Phys. Rev. Lett.
Volume
99
Date Published
DEC 31
URL
http://dx.doi.org/10.1103/PhysRevLett.99.266402
DOI
10.1103/PhysRevLett.99.266402
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.