User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Macroscopic and microscopic components of exchange-correlation interactions

Breadcrumb

  • Home
  • Macroscopic and microscopic components of exchange-correlation interactions
Author
Francesco Sottile
K Karlsson
Lucia Reining
F Aryasetiawan
Keywords
paper
TDDFT
Abstract

We consider two commonly used approaches for the ab initio calculation of optical-absorption spectra, namely, many-body perturbation theory based on Green\textquoterights functions and time-dependent density-functional theory (TDDFT). The former leads to the two-particle Bethe-Salpeter equation that contains a screened electron-hole interaction. We approximate this interaction in various ways, and discuss in particular the results obtained for a local contact potential. This, in fact, allows us to straightforwardly make the link to the TDDFT approach, and to discuss the exchange-correlation kernel f(xc) that corresponds to the contact exciton. Our main results, illustrated in the examples of bulk silicon, GaAs, argon, and LiF, are the following. (i) The simple contact exciton model, used on top of an ab initio calculated band structure, yields reasonable absorption spectra. (ii) Qualitatively extremely different f(xc) can be derived approximatively from the same Bethe-Salpeter equation. These kernels can however yield very similar spectra. (iii) A static f(xc), both with or without a long-range component, can create transitions in the quasiparticle gap. To the best of our knowledge, this is the first time that TDDFT has been shown to be able to reproduce bound excitons.

Year of Publication
2003
Journal
Phys. Rev. B
Volume
68
Date Published
NOV
URL
http://dx.doi.org/10.1103/PhysRevB.68.205112
DOI
10.1103/PhysRevB.68.205112
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.