User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Parameter-free calculation of response functions in time-dependent density-functional theory

Breadcrumb

  • Home
  • Parameter-free calculation of response functions in time-dependent density-functional theory
Author
Francesco Sottile
Olevano V
Lucia Reining
Keywords
paper
TDDFT
Abstract

We have established and implemented a fully ab initio method which allows one to calculate optical absorption spectra, including excitonic effects, without solving the cumbersome Bethe-Salpeter equation, but obtaining results of the same precision. This breakthrough has been achieved in the framework of time-dependent density-functional theory, using new exchange-correlation kernels f(xc) that are free of any empirical parameter. We show that the same excitonic effects in the optical spectra can be reproduced through different f(xc)\textquoterights, ranging from frequency-dependent ones to a static one, by varying the kernel\textquoterights spatial degrees of freedom. This indicates that the key quantity is not f(xc), but f(xc) combined with a response function. We present results for the optical absorption of bulk Si and SiC in good agreement with experiment, almost indistinguishable from those of the Bethe-Salpeter approach.

Year of Publication
2003
Journal
Phys. Rev. Lett.
Volume
91
Number of Pages
056402
Date Published
AUG 1
URL
http://dx.doi.org/10.1103/PhysRevLett.91.056402
DOI
10.1103/PhysRevLett.91.056402
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.