User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Electronic excitations: density-functional versus many-body Green\textquoterights-function approaches

Breadcrumb

  • Home
  • Electronic excitations: density-functional versus many-body Green\textquoterights-function approaches
Author
G Onida
Lucia Reining
Angel Rubio
Keywords
paper
Abstract

Electronic excitations lie at the origin of most of the commonly measured spectra. However. the first-principles computation of excited states requires a larger effort than ground-state calculations, which can be very efficiently carried out within density-functional theory. On the other hand, two theoretical and computational tools have come to prominence for the description of electronic excitations. One of them, many-body perturbation theory, is based on a set of Green\textquoterights-function equations, starting with a one-electron propagator and considering the electron-hole Green\textquoterights function for the response. Key ingredients are the electron\textquoterights self-energy 1 and the electron-hole interaction. A good approximation for Sigma is obtained with Hedin\textquoterights G W approach. using density-functional theory as a zero-order solution. First-principles G W calculations for real systems have been successfully carried out since the 1980s. Similarly, the electron-hole interaction is well described by the Bethe-Salpeter equation, via a functional derivative of Sigma. An alternative approach to calculating electronic excitations is the time-dependent density-functional theory (TDDFT). which offers the important practical advantage of a dependence on density rather than on multivariable Green\textquoterights functions. This approach leads to a screening equation similar to the Bethe-Salpeter one. but with a two-point, rather than a four-point, interaction kernel, At present. the simple adiabatic local-density approximation has given promising results for finite systems, but has significant deficiencies in the description of absorption spectra in solids. leading to wrong excitation energies, the absence of bound excitonic states, and appreciable distortions of the spectral line shapes. The search for improved TDDFT potentials and kernels is hence a subject of increasing interest. It can be addressed within the framework of many-body perturbation theory: in fact. both the Green\textquoterights functions and the TDDFT approaches profit from mutual insight. This review compares the theoretical and practical aspects of the two approaches and their specific numerical implementations, and presents an overview of accomplishments and work in progress.

Year of Publication
2002
Journal
Reviews of Modern Physics
Volume
74
Number of Pages
601-659
Date Published
APR
Download citation
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.