User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Alloying effects on the optical properties of Ge1-xSix nanocrystals from time-dependent density functional theory and comparison with effective-medium theory

Breadcrumb

  • Home
  • Alloying effects on the optical properties of Ge1-xSix nanocrystals from time-dependent density functional theory and comparison with effective-medium theory
Author
Silvana Botti
Hans-Christian Weissker
M Marques
Keywords
paper
Abstract

We present the optical spectra of Ge1-xSix alloy nanocrystals of a fixed size calculated with time-dependent density functional theory in the adiabatic local-density approximation (TDLDA). The spectra change smoothly as a function of the composition x. On the Ge side of the composition range, the lowest excitations at the absorption edge are almost pure Kohn-Sham independent-particle highest occupied molecular orbital\textendashlowest occupied molecular orbital transitions, while for higher Si contents strong mixing of transitions is found. Within TDLDA the first peak is slightly higher in energy than in earlier independent-particle calculations. However, the absorption onset and in particular its composition dependence is similar to independent-particle results. Moreover, classical depolarization effects are responsible for a very strong suppression of the absorption intensity. We show that they can be taken into account in a simpler way using Maxwell-Garnett classical effective-medium theory. Emission spectra are investigated by calculating the absorption of excited nanocrystals at their relaxed geometry. The structural contribution to the Stokes shift is about 0.5 eV. The decomposition of the emission spectra in terms of independent-particle transitions is similar to what is found for absorption. For the emission, very weak transitions are found in Ge-rich clusters well below the strong absorption onset.

Year of Publication
2009
Journal
Phys. Rev. B
Volume
79, 155440
URL
http://link.aps.org/doi/10.1103/PhysRevB.79.155440
DOI
10.1103/PhysRevB.79.155440
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.