User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Size-scaling of the polarizability of tubular fullerenes investigated with time-dependent (current)-density-functional theory

Breadcrumb

  • Home
  • Size-scaling of the polarizability of tubular fullerenes investigated with time-dependent (current)-density-functional theory
Author
M van Faassen
J Jensen
J Berger
P. de Boeij
Keywords
non-Palaiseau
paper
Abstract

We present a study of the static polarizability for the tubular fullerenes C-60 + (i x 10), where i= 0-5, and the closely related [5,5] carbon nanotube, using time-dependent (current)-density-functional theory. Comparing the results obtained within the conventional adiabatic local-density approximation with those obtained using the Vignale-Kohn current-dependent exchange-correlation functional it is found that the extra long-range exchange-correlation effects described by the current-density functional are important to consider, especially for the longest fullerenes. For all systems studied the current-density functional results are in good agreement with experiment, and the agreement with available ab initio self-consistent-field results and results from a point-dipole interaction model is much better than when using the adiabatic local-density functional. (C) 2004 Elsevier B.V. All rights reserved.

Year of Publication
2004
Journal
CHEMICAL PHYSICS LETTERS
Volume
395
Number of Pages
274-278
Date Published
SEP 11
Download citation
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.