User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Electronic Excitations in Carbon Nanostructures: Building-Block Approach

Breadcrumb

  • Home
  • Electronic Excitations in Carbon Nanostructures: Building-Block Approach
Author
R. Hambach
Abstract
The description of nanostructures using a plane-wave basis set usually requires large supercells in order to avoid spurious Coulomb interactions between the replicas. In particular, the calculations of electron energy-loss spectra for low-dimensional systems like graphene or carbon nanotubes become numerically very demanding or even unfeasible. We overcome this problem by means of a building-block approach: Combining effective-medium theory and ab-initio calculations we can describe the collective excitations in nanostructures (like carbon nanotubes) starting from the microscopic polarisability of their building blocks (bulk graphite). To this end, Maxwell s equations are solved using the full frequency- and momentum-dependent microscopic dielectric function $\epsilon(q,q ,\omega)$ of the bulk material. The latter is calculated from first principles within the random phase approximation [1]. Besides an important gain in calculation time this method allows us to analyse the loss spectra of nanostructures in terms of their normal-mode excitations. We apply the building-block approach to study angular-resolved loss spectra for graphene and single-wall carbon nanotubes and find a very good agreement with full ab-initio calculations of these systems and corresponding experiments. Our findings can be also used for an efficient theoretical description of spatially-resolved electron energy-loss experiments. [1] AbInit: www.abinit.org, DP-code: www.dp-code.org
Year of Publication
2010
Conference Name
ETSF Workshop, Berlin
Date Published
10/15
Presentation file
201010_ETSF_Hambach.pdf (2.73 MB)
Download citation
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.