User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Origin of the optical contrast in phase-change materials

Breadcrumb

  • Home
  • Origin of the optical contrast in phase-change materials
Author
W Welnic
Silvana Botti
Lucia Reining
Matthias Wuttig
Keywords
paper
Abstract

Several chalcogenide alloys exhibit a pronounced contrast between the optical absorption in the metastable rocksalt and in the amorphous phase. This phenomenon is the basis for their application in optical data storage. Here we present ab initio calculations of the optical properties of GeTe and Ge1Sb2Te4 in the two phases. The analysis of our computations and experimental data reveal the correlation between local structural changes and optical properties as well as the origin of the optical contrast in these materials. We find that the change in optical properties cannot be attributed to a smearing of transition energies as commonly assumed for amorphous semiconductors: the optical contrast between the two phases can only be explained by significant changes in the transition matrix elements.

Year of Publication
2007
Journal
Phys. Rev. Lett.
Volume
98
Number of Pages
236403
Date Published
JUN 8
URL
http://dx.doi.org/10.1103/PhysRevLett.98.236403
DOI
10.1103/PhysRevLett.98.236403
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.