User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor

Breadcrumb

  • Home
  • Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor
Author
H Vach
Q Brulin
N Chaabane
T Novikova
PRI Cabarrocas
B Kalache
K Hassouni
Silvana Botti
Lucia Reining
Keywords
paper
silicon
hydrogen
plasma
PECVD
fluid dynamics model
time-dependent DFT
semiempirical molecular dynamics simulations
cluster growth dynamics
crystallization
absorption spectrum
nanostructures
polymorphous silicon
solar cells
Abstract

We present results of an extensive numerical study that was motivated by the experimental problem to understand under which conditions SinHm nanoparticles deposited by plasma enhanced chemical vapor deposition (PECVD) take an amorphous or a crystalline structure. A crystalline structure of those particles is crucial, for example, for the electrical properties and lifetime of polymorphous solar cells. First, we use a fluid dynamics model to characterize the experimentally employed silane plasma. The resulting relative densities for all plasma radicals, their temperatures, and their collision interval times are then used as input data for detailed semiempirical quantum molecular dynamics simulations. As a result the growth dynamics of nanometric hydrogenated silicon SinHm clusters is simulated starting out from the collision of individual SiHx radicals under the plasma conditions derived above. We demonstrate how the details of the plasma determine the amorphous or crystalline character of the forming nanoparticles. Finally, we show a preliminary absorption spectrum based on ab initio time-dependent DFT calculations for a crystalline Si10H16 cluster to demonstrate the possibility to monitor the cluster growth in situ. (c) 2005 Elsevier B.V. All rights reserved.

Year of Publication
2006
Journal
Comp. Mat. Science
Volume
35
Number of Pages
216-222
Date Published
MAR
URL
http://dx.doi.org/10.1016/j.commatsci.2004.07.010
DOI
10.1016/j.commatsci.2004.07.010
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.