User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Many-body effects in the electronic spectra of cubic boron nitride

Breadcrumb

  • Home
  • Many-body effects in the electronic spectra of cubic boron nitride
Author
G Satta
G Cappellini
Olevano V
Lucia Reining
Keywords
paper
Abstract

We present state of the art first-principles calculations of optical spectra and the loss function of bulk cubic boron nitride (c-BN), starting from a density functional Kohn-Sham band structure. We investigate the influence of many-body effects beyond the random phase approximation (RPA) on the optical spectra through the inclusion of self-energy and excitonic effects by a GW calculation and the solution of the Bethe-Salpeter equation. For the loss function we only perform RPA calculations, since Bethe-Salpeter results are already available in the literature. We show to which extent, and in which kind of spectra, the description of many-body effects is important for a meaningful comparison with experiment, and when they can be neglected due to mutual cancellation. We also present results obtained within time-dependent density functional theory, both in the adiabatic local density approximation (TDLDA) and using a recently proposed long-range approximation for the exchange-correlation kernel. Our results show that the latter corrects a big part of the error with respect to RPA or TDLDA; however, the corrections are not sufficient to qualify the method for further quantitative predictions, in particular for the study of the optical gap. In fact, since experiments often quote a relatively low (around 6.4 eV) band gap, whereas the calculated optical absorption spectrum already in the random-phase approximation appears blueshifted by more than 2 eV with respect to the available experimental curve, we study in particular the question of the optical gap in this material. It turns out that, although there is evidence for a weakly bound exciton in c-BN, the optical gap of pure monocrystalline cubic BN should be around 11 eV, hence significantly bigger than has sometimes been quoted from experiments.

Year of Publication
2004
Journal
Phys. Rev. B
Volume
70
Date Published
NOV
URL
http://dx.doi.org/10.1103/PhysRevB.70.195212
DOI
10.1103/PhysRevB.70.195212
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.