User account menu

  • Log in
Home
Theoretical Spectroscopy Group

Main navigation

  • Home
  • People
    • Andrea Cucca
    • Christine Giorgetti
    • Francesco Sottile
    • Lucia Reining
    • Matteo Gatti
    • Valerie Veniard
    • Vitaly Gorelov
      • Fatema Mohamed
      • Kevin Leveque-Simon
      • Felana Andriambelaza
      • Maram Ali Ahmed Musa
      • Sarbajit Dutta
      • Marc Aichner
      • Carlos Rodriguez Perez
      • Jean Goossaert
      • Niklas Penner
    • Former Members
  • How to Reach Us
  • Research
    • Strong Correlation
    • Plasmons and EELS
    • Developments in TDDFT
    • Excitons and Exciton Dispersion
    • Larger Public
    • Low dimensional materials
    • Non-linear Optics
    • Scientific goals and main achievements
    • Theory Developments
    • Software
    • Publications
    • Thesis
  • Training
  • ETSF Events

Second-Harmonic Generation Spectroscopy from Time-dependent Density-Functional Theory

Breadcrumb

  • Home
  • Second-Harmonic Generation Spectroscopy from Time-dependent Density-Functional Theory
Author
Eleonora Luppi
Hannes Hübener
Matteo Bertocchi
Elena Degoli
Stefano Ossicini
Valérie Véniard
Keywords
optical properties
simulation
semiconducting
Abstract

We developed an ab initio formalism based on Time-Dependent Density-Functional Theory for the calculation of the second-order susceptibility Χ(2) (Luppi et al. J. Chem. Phys. 132, 241104(2010)). We apply this formalism to the calculation of second-harmonic generation spectra of hexagonal SiC polytypes, ZnGeP2 (ZGP) and GaP. Starting from the independent-particle approximation, we include manybody effects, such as quasiparticle via the scissors operator, crystal local fields and excitons. We consider two different types of kernels: the ALDA and the \textquotedblleftlong-range\textquotedblright kernel. We analyze the effects of the different electron-electron descriptions in the spectra, finding good agreement with experiments.

Year of Publication
2011
Journal
MRS Spring Meeting Proceedings
Volume
1370
URL
http://journals.cambridge.org/article_S1946427411007895
DOI
10.1557/opl.2011.789
Download citation
  • DOI
  • Google Scholar
  • BibTeX
  • RIS

Developed & Designed by Alaa Haddad. Customized by ETSF Palaiseau © 2025.